§1. SMOOTH MANIFOLDS
AND SMOOTH MAPS

FIRST let us explain some of our terms. R* denotes the k-dimensional
euclidean space; thus a point x e R* is an k-tuple x = (z;, ... ,2,) of
real numbers.

Let U C R* and V C R’ be open sets. A mapping f from U to V
(written f : U — V) is called smooth if all of the partial derivatives
a*f/dx;, .-+ dx,, exist and are continuous.

More generally let X C R* and Y C R’ be arbitrary subsets of
euclidean spaces. A map f : X — Y is called smooth if for each x & X
there exist an open set U C R* containing x and a smooth mapping
F : U — R' that coincides with f throughout U A X .

If{f:X - Yandg : Y — Z are smooth, note that the composition
g of : X — Z is also smooth. The identity map of any set X is auto-
matically smooth.

DEeFINITION. A map f : X — Yis called a diffeomorphism if f carries X
homeomorphically onto Y and if both f and ! are smooth.

We can now indicate roughly what differential topology is about by
saying that it studies those properties of a set X C R* which are invariant
under diffeomorphism.

We do not, however, want to look at completely arbitrary sets X.
The following definition singles out a particularly attractive and useful
class.

DEFINITION. A subset M C R* is called a smooth manifold of dimension
m if each x & M has a neighborhood W A M that is diffeomorphic to
an open subset U of the euclidean space R".

Any particular diffeomorphism g : U — W A M is called a para-
metrizatton of the region W A M. (The inverse diffeomorphism
WM M — Uis called a system of coordinates on W A M.)
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Figure 1. Parametrization & a region in M

Sometimes we will need to look at manifolds of dimension zero. By
definition, M is a manifold of dimension zero if each x & M has a neigh-
borhood W M\ M consisting of x alone.

ExampLEs. The unit sphere S? consisting of all (z, y, z) & R® with
2t + 2 = 1is a smooth manifold of dimension 2. In fact the
diffeomorphism

(z,y) = (&, v, V1 —a* _y?),

for z* 4 < 1, parametrizes the region z > 0 of S°. By interchanging
the roles of x,y, 2, and changing the signs of the variables, we obtain
similar parametrizations of the regionsx = 0,y = 0,x <0,y <0,
and z < 0. Since these cover 7, it follows that S* is a smooth manifold.

More generally the sphere S*™' C R” consisting of all (z;, . , .,
with 3 2? = 1is a smooth manifold of dimension » — 1.For example
S° C R' is a manifold consisting of just two points.

A somewhat wilder example of a smooth manifold is given by the
set of all (x,y) e R* withx # Oand y = sin(1/x).

TANGENT SPACES AND DERIVATIVES

To define the notion of derivative df, for a smooth map f : M — N
of smooth manifolds, we first associate with each x e M C R* a linear
subspace TM, C R* of dimension m called the tangent space of M at x.
Then df, will be a linear mapping from TM, to TN,, where y = f(x).
Elements of the vector space TM, are called tangent vectors to M at x.

Intuitively one thinks of the m-dimensional hyperplane in R* which
best approximates M near x;then TM, is the hyperplane through the
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origin that is parallel to this. (Compare Figures 1 and 2.) Similarly
one thinks of the nonhomogeneous linear mapping from the tangent
hyperplane at x to the tangent hyperplane at y which best approxi-
mates f. Translating both hyperplanes to the origin, one obtains df,.

Before giving the actual definition, we must study the special case
of mappings between open sets. For any open set U C R* the tangent
space TU, is defined to be the entire vector space R*. For any smooth
map [: U— V the derivative

df, :R* = R'
is defined by the formula
af.) = lim (@ T ) — f@)/t

for x & U, h & R*. Clearly df,(h) is a linear function of 4. (In fact df,
is just that linear mapping which corresponds to the [ X k matrix
(8f:/0z;), of first partial derivatives, evaluated at z.)

Here are two fundamental properties of the derivative operation:

1 (Chain rule). I[ff : U — Vand g : V — W are smooth maps, with
fx) =y, then

d(g °© f)z = dgv © dfz'

In other words, to every commutative triangle

a

gof

of smooth maps between open subsets of R*, R’, R™ there corresponds
a commutative triangle of linear maps

Rl
df//' \g

R# R™.

d(g ° ).

2. If I is the identity map o U, then dl, is the identity map of R*.
More generally, if'U C U’ are open sets and

1:U—-U
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smooth map
j:M—>N

with f(z) = y. The derivative
df, :-TM.— TN,
is defined as follows. Since f is smooth there exist an open set W con-
taining x and a smooth map
F:W-—-R
that coincides with f on W M M. Define df.(v) to be equal to dF,.(v)
forallv e TM..

To justify this definition we must prove that dF.(v) belongs to TN,

and that it does not depend on the particular choice of F.
Choose parametrizations

g:U—>MCR' and h:V—>NCR'

for neighborhoods g(U) of x and A(V) of y. Replacing U by a smaller

set if necessary, we may assume that g(U) C W and that { maps g(U)
into h(V). It follows that

hlofog:U—V

is a well-defined smooth mapping.
Consider the commutative diagram

w F  SR'

QT Th
-1
UME

of smooth mappings between open sets. Taking derivatives, we obtain
a commutative diagram of linear mappings

Rk de 1
—

A
9] a0 fo g

Rm n
where . = ¢ (), v = R (y).
It follows immediately that dF, carries TM, = Image (dg.) into

TN, = Image (dh,). Furthermore the resulting map df. does not
depend on the particular choice of F, for we can obtain the same linear
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transformation by going around the bottom of the diagram. That is:
df, = dh, o d(h™ o fog),0(dg) .
This completes the proof that
df. : TM,— TN,
is a well-defined linear mapping.

As before, the derivative operation has two fundamental properties:

1. (Chainrule). If f :M — N and g :N — P are smooth, with {(z) =y,
then

d(gof). = dg,odf..

2. If I is the identity map of M, then dl, is the identity map of TM,.
More generally, if M C N with inclusion map i, then TM, C TN, with
inclusion muap di,. (Compare IFigure 2.)
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Figure 2. 7'he tangent space of a submanzfold

The proofs are straightforward.
As before, these two properties lead to the following:

AssErTION. [ff : M — N is a diffeomorphism, then df, : TM, — TN,
is an isomorphism of vector spaces. In particular the dimension of M
must be equal to the dimension of N.

REGULAR VALUES

Let f : M — N be a smooth map between manifolds of the same
dimension.* We say that x ¢ M is a regular point of f if the derivative

* This restriction will be removed in §2.
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df, is nonsingular. In this case it follows from the inverse function
theorem that f maps a neighborhood of x in M diffeomorphically onto
an open set in N. The point ¥ & N is called a regular value if f~'(y)
contains only regular points.

If df, is singular, then x is called a critical point of {, and the image
f(z) is called a critical value. Thus each y e N is either a critical value or a
regular value according as f ' (y) does or does not contain a critical point.

Observe that 7 M is compact and y & N is a regular value, then {™'(y)
is afinite set (possibly empty). For {~'(y) is in any case compact, being
a closed subset of the compact,space M, and f~'(y) is discrete, since f
is one-one in a neighborhood of each x ¢ 7' (y).

For a smooth :M — N, with M compact, and a regular value y e N,
we define # () to be the number o points inf ' (y). The first observation
to be made about #f'(y) is that it is locally constant as a function of y
(where y ranges only through regular values!). l.e., there is a neighbor-
hood VC N of y such that #f~'(y') = #{' () for anyy’ e V.[Letz,, - .. ,x;
be the points of f7'(y), and choose pairwise disjoint neighborhoods

U,, -+ ,Us of these which are mapped diffeomorphically onto neighbor-
hoods Vi, .- , V. in N. We may then take

V=V.AV,A-- AV, —f(M =U, — - = U]

THE FUNDAMENTAL THEOREM OF ALGEBRA

As an application of these notions, we prove the fundamental theorem
of algebra: every nonconstant complex polynomial P(2) must have a zero.
For the proof it is first necessary to pass from the plane of complex
numbers to a compact manifold. Consider the unit sphere 8* C R* and
the stereographic projection
.8 —=1{0,0,1)-RX0CR

from the "north pole™ (0, 0, 1) of S°. (See Figure 3.) We will identify
R? X 0 with the plane of complex numbers. The polynomial map P from
R? X 0 itself corresponds to a map f from S” to itself; where

fix) = h'Ph,(z) for x # (0,0, 1)
f(0> 07 1) = (O> 0; 1)

It is well known that this resulting map{ is smooth, even in a neighbor-
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(0,0,1)
he(x) ‘ R%0

Figure 8. Stereographic projection

hood of the north pole. To see this we introduce the stereographic
projection A_ from the south pole (0,0, —1) and set

Q@) = h_[hZ' ().
Note, by elementary geometry, that

hohZ'(2) =z2/|]F = 1/2.

Sow if P(z) = a," + a,z"! + + a,, with a, # 0, then a short
computation shows that

QR =2"/a + ae +...+ az").

Thus @ is smooth in a neighborhood of 0, and it follows that f = hZ'Qh.
is smooth in a neighborhood of (0, 0, 1).

Next observe that / has only a finite number of critical points; for P
fails to be a local diffeomorphism only at the zeros of the derivative
polynomial P'(z) = > a,_; j2' ', and there are only finitely many
zeros since P’ is not identically zero. The set of regular values of f,
being a sphere with finitely many points removed, is therefore connected.
Hence the locally constant function #'(y) must actually be constant
on this set. Since # '(y) can't be zero everywhere, we conclude that
it is zero nowhere. Thus f is an onto mapping, and the polynomial P
must have a zero.



