§1. SMOOTH MANIFOLDS AND SMOOTH MAPS

FIRST let us explain some of our terms. R^k denotes the k-dimensional euclidean space; thus a point $x \in R^k$ is an k-tuple $x = (x_1, \ldots, x_k)$ of real numbers.

Let $U \subset \mathbb{R}^k$ and $V \subset \mathbb{R}'$ be open sets. A mapping f from U to V (written $f : U \to V$) is called *smooth* if all of the partial derivatives $\partial^n f/\partial x_{i_1} \cdots \partial x_{i_n}$ exist and are continuous.

More generally let $X \subset \mathbb{R}^k$ and $Y \subset \mathbb{R}'$ be arbitrary subsets of euclidean spaces. A map $f: X \to Y$ is called *smooth* if for each $x \in X$ there exist an open set $U \subset \mathbb{R}^k$ containing x and a smooth mapping $F: U \to \mathbb{R}^l$ that coincides with f throughout $U \land X$.

If $f: X \to Y$ and $g: Y \to Z$ are smooth, note that the composition g of $: X \to Z$ is also smooth. The identity map of any set X is automatically smooth.

DEFINITION. A map $f : X \to Y$ is called a *diffeomorphism* if f carries X homeomorphically onto Y and if both f and f^{-1} are smooth.

We can now indicate roughly what *differential topology* is about by saying that it studies those properties of a set $X \subset \mathbb{R}^k$ which are invariant under diffeomorphism.

We do not, however, want to **look** at completely arbitrary sets X. The following definition singles out a particularly attractive and useful class.

DEFINITION. A subset $M \subset R^k$ is called a *smooth manifold* of *dimension* m if each $x \in M$ has a neighborhood $W \land M$ that is diffeomorphic to an open subset U of the euclidean space R''.

Any particular diffeomorphism $g : U \to W \land M$ is called a *para*metrization of the region $W \land M$. (The inverse diffeomorphism $W \cap M \to U$ is called a system of *coordinates* on $W \land M$.)

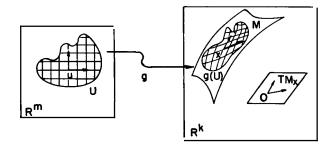


Figure 1. Parametrization of a region in M

Sometimes we will need to look at manifolds of dimension zero. By definition, M is a manifold of dimension zero if each $x \in M$ has a neighborhood $W \cap M$ consisting of x alone.

EXAMPLES. The unit sphere S^2 , consisting of all $(x, y, z) \in \mathbb{R}^3$ with $x^2 + y^2 + z^2 = 1$ is a smooth manifold of dimension 2. In fact the diffeomorphism

$$(x, y) \rightarrow (x, y, \sqrt{1 - x^2 - y^2})$$

for $x^2 + y^2 < 1$, parametrizes the region z > 0 of S^2 . By interchanging the roles of x, y, z, and changing the signs of the variables, we obtain similar parametrizations of the regions x > 0, y > 0, x < 0, y < 0, and z < 0. Since these cover S^2 , it follows that S^2 is a smooth manifold.

More generally the sphere $S^{n-1} \subset R^n$ consisting of all (x_1, \dots, x_n) with $\sum x_i^2 = 1$ is a smooth manifold of dimension n - 1. For example $S^0 \subset R^1$ is a manifold consisting of just two points.

A somewhat wilder example of a smooth manifold is given by the set of all $(x, y) \equiv R^2$ with $x \neq 0$ and $y = \sin(1/x)$.

TANGENT SPACES AND DERIVATIVES

To define the notion of *derivative df*, for a smooth map $f: M \to N$ of smooth manifolds, we first associate with each $x \ge M \subset R^k$ a linear subspace TM, $\subset R^k$ of dimension m called the *tangent space* of M at x. Then *df*, will be a linear mapping from TM, to TN, where y = f(x). Elements of the vector space TM, are called *tangent vectors* to M at x. Intuitively one thinks of the m-dimensional hyperplane in R^k which best approximates M near x; then TM_x is the hyperplane through the Tangent spaces

origin that is parallel to this. (Compare Figures 1 and 2.) Similarly one thinks of the nonhomogeneous linear mapping from the tangent hyperplane at x to the tangent hyperplane at y which best approximates f. Translating both hyperplanes to the origin, one obtains df_x .

Before giving the actual definition, we must study the special case of mappings between open sets. For any open set $U \subset \mathbb{R}^k$ the *tangent* space TU_x is defined to be the entire vector space \mathbb{R}^k . For any smooth map $f: U \to V$ the *derivative*

$$df_x: R^k \to R^l$$

is defined by the formula

$$df_x(h) = \lim_{t \to 0} (f(x + th) - f(x))/t$$

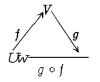
for $x \in U$, $h \in \mathbb{R}^k$. Clearly $df_x(h)$ is a linear function of h. (In fact df, is just that linear mapping which corresponds to the $l \times k$ matrix $(\partial f_i / \partial x_i)_x$ of first partial derivatives, evaluated at x.)

Here are two fundamental properties of the derivative operation:

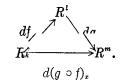
1 (Chain rule). If $f: U \to V$ and $g: V \to W$ are smooth maps, with f(x) = y, then

$$d(g \circ f)_x = dg_y \circ df_z.$$

In other words, to every commutative triangle



of smooth maps between open subsets of R^k , R^l , R^m there corresponds a commutative triangle of linear maps



2. If I is the identity map of U, then dI_x is the identity map of \mathbb{R}^k . More generally, $if U \subset U'$ are open sets and

6

smooth map

 $f: M \to N$

with f(x) = y. The derivative

$$df_x:TM_x\to TN$$

is defined as follows. Since f is smooth there exist an open set W containing x and a smooth map

 $F: W \to R^{\iota}$

that coincides with f on $W \cap M$. Define $df_x(v)$ to be equal to $dF_x(v)$ for all $v \in TM_x$.

To justify this definition we must prove that $dF_x(v)$ belongs to TN, and that it does not depend on the particular choice of F.

Choose parametrizations

 $g: U \to M \subset R^k$ and $h: V \to N \subset R^l$

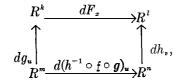
for neighborhoods g(U) of x and h(V) of y. Replacing U by a smaller set if necessary, we may assume that $g(U) \subset W$ and that f maps g(U) into h(V). It follows that

$$h^{-1} \circ f \circ g : U \longrightarrow V$$

is a well-defined smooth mapping.

Consider the commutative diagram

of smooth mappings between open sets. Taking derivatives, we obtain a commutative diagram of linear mappings



where $u = g^{-1}(x), v = h^{-1}(y)$.

It follows immediately that dF_x carries $TM_x = \text{Image } (dg_u)$ into $TN_y = \text{Image } (dh_o)$. Furthermore the resulting map df_x does not depend on the particular choice of F, for we can obtain the same linear

Regular values

transformation by going around the bottom of the diagram. That is:

$$df_x = dh, \circ d(h^{-1} \circ f \circ g)_u \circ (dg_u)^{-1}.$$

This completes the proof that

$$df_x:TM_x\to TN,$$

is a well-defined linear mapping.

As before, the derivative operation has two fundamental properties:

1. (Chain rule). If $f: M \to N$ and $g: N \to P$ are smooth, with f(x) = y, then

$$d(g \circ f)_x = dg_y \circ df_x.$$

2. If I is the identity map of M, then dI_x is the identity map of TM_x . More generally, if $M \ C \ N$ with inclusion map i, then TM, $\subset TN_x$ with inclusion map di_x . (Compare Figure 2.)

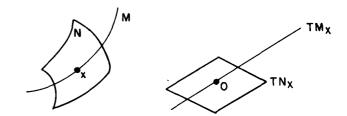


Figure 2. 7'he tangent space of a submanifold

The proofs are straightforward. As before, these two properties lead to the following:

ASSERTION. If $f: M \to N$ is a diffeomorphism, then $df_x: TM_x \to TN$, is an isomorphism of vector spaces. In particular the dimension of M must be equal to the dimension of N.

REGULAR VALUES

Let $f : M \to N$ be a smooth map between manifolds of the same dimension.* We say that $x \in M$ is a *regular point* of f if the derivative

^{*} This restriction will be removed in §2.

Fundamental theorem of algebra

df, is nonsingular. In this case it follows from the inverse function theorem that f maps a neighborhood of x in M diffeomorphically onto an open set in N. The point $y \in N$ is called a *regular value* if $f^{-1}(y)$ contains only regular points.

If df, is singular, then x is called a *critical point* of f, and the image f(x) is called a *critical value*. Thus each $y \in N$ is either a critical value or a regular value according as $f^{-1}(y)$ does or does not contain a critical point.

Observe that f M is compact and $y \ge N$ is a regular value, then $f^{-1}(y)$ is afinite set (possibly empty). For $f^{-1}(y)$ is in any case compact, being a closed subset of the compact, space M; and $f^{-1}(y)$ is discrete, since f is one-one in a neighborhood of each $x \ge f^{-1}(y)$.

For a smooth $f: M \to N$, with M compact, and a regular value $y \in N$, we define $\#f^{-1}(y)$ to be the number of points in $f^{-1}(y)$. The first observation to be made about $\#f^{-1}(y)$ is that it is locally constant as a function of y(where y ranges only through regular values!). I.e., there is a neighborhood $V \subset N$ of y such that $\#f^{-1}(y') = \#f^{-1}(y)$ for any $y' \in V$. [Let x_1, \dots, x_k be the points of $f^{-1}(y)$, and choose pairwise disjoint neighborhoods U_i, \dots, U_k of these which are mapped diffeomorphically onto neighborhoods V_1, \dots, V_k in N. We may then take

$$V = V_1 \land V_2 \land \cdots \land V_k - f(M - U_1 - \cdots - U_k)$$

THE FUNDAMENTAL THEOREM OF ALGEBRA

As an application of these notions, we prove the fundamental theorem of algebra: every nonconstant complex polynomial P(z) must have a zero.

For the proof it is first necessary to pass from the plane of complex numbers to a compact manifold. Consider the unit sphere $S^2 \subset R^3$ and the stereographic projection

 $h_+: S^2 - \{(0, 0, 1)\} \rightarrow R^2 \times \mathbf{0} \subset R^3$

from the "north pole" (0, 0, 1) of S^2 . (See Figure 3.) We will identify $R^2 \times 0$ with the plane of complex numbers. The polynomial map P from $R^2 \times 0$ itself corresponds to a map f from S^2 to itself; where

 $f(x) = h_{+}^{-1}Ph_{+}(x) \text{ for } x \neq (0, 0, 1)$ f(0, 0, 1) = (0, 0, 1).

It is well known that this resulting map f is smooth, even in a neighbor-

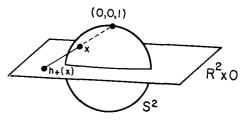


Figure 3. Stereographic projection

hood of the north pole. To see this we introduce the stereographic projection h_{-} from the south pole (0, 0, -1) and set

$$Q(z) = h_{-} f h_{-}^{-1}(z).$$

Note, by elementary geometry, that

$$h_+h_-^{-1}(z) = z/|z|^2 = 1/\bar{z}.$$

Sow if $P(z) = a_0 z^n + a_1 z^{n-1} + \ldots + a_n$, with $a_n \neq 0$, then a short computation shows that

$$Q(z) = z^n/(\bar{a}_0 + \bar{a}_1 z + ... + \bar{a}_n z^n).$$

Thus Q is smooth in a neighborhood of 0, and it follows that $f = h_{-}^{-1}Qh_{-}$ is smooth in a neighborhood of (0, 0, 1).

Next observe that f has only a finite number of critical points; for P fails to be a local diffeomorphism only at the zeros of the derivative polynomial $P'(z) = \sum_{n=1}^{\infty} a_{n-i} j z^{i-1}$, and there are only finitely many zeros since P' is not identically zero. The set of regular values of f, being a sphere with finitely many points removed, is therefore connected. Hence the locally constant function $\#f^{-1}(y)$ must actually be constant on this set. Since $\#f^{-1}(y)$ can't be zero everywhere, we conclude that it is zero nowhere. Thus f is an onto mapping, and the polynomial P must have a zero.

9

8